CS 372: Computational Geometry
Lecture 14
Geometric Approximation Algorithms

Antoine Vigneron

King Abdullah University of Science and Technology

December 5, 2012
1 Introduction

2 The diameter problem

3 A 2-approximation algorithm

4 Approximation scheme

5 Rounding to a grid
Outline

Introduction to geometric approximation algorithms.

Example: Computing the diameter of a point-set.

- Simple 2-approximation algorithm.
- Two approaches for ε-approximation:
 - Rounding.
 - Projection.

References:

- Sariel Har Peled’s book.
- Paper by T. Chan, *Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus*, Section 2.
The Diameter Problem

- **Input:** a set P of n points in \mathbb{R}^d.

![Diagram of points](image)
The Diameter Problem

\[\Delta^* = |a^*b^*| \]

- **Input:** a set \(P \) of \(n \) points in \(\mathbb{R}^d \).
- **Output:** the maximum distance \(\Delta^* \) between any two points of \(P \).
- \(\Delta^* \) is called the *diameter* of \(P \).
Brute Force Algorithm

Computing the distance between two points:

- If \(a = (a_1, a_2, \ldots, a_d) \) and \(b = (b_1, b_2, \ldots, b_d) \), then
 \[
 |ab| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \cdots + (b_d - a_d)^2}.
 \]

- It takes \(O(d) \) time.
- Here we assume that \(d \) is constant: \(d = O(1) \).
 - We are in fixed dimension.
- Then we can compute \(|ab| \) in \(O(1) \) time.

Computing the diameter:

- Brute force: Check all pairs in \(P^2 \) and keep the maximum distance.
- Brute force takes \(O(n^2) \) time.
Approximation Algorithms

Definition (c-factor approximation)
We say that Δ is a c-factor approximation to Δ^* if $\Delta \leq \Delta^* \leq c\Delta$.

Definition (c-approximation algorithm)
A c-approximation algorithm for a maximization problem is an algorithm that computes a c-factor approximation of the optimum in polynomial time.

We will give a 2-approximation algorithm for the diameter problem.
- That is, we find Δ_0 such that $\Delta_0 \leq \Delta^* \leq 2\Delta_0$
- $O(n)$ time, very simple.
- Best known exact algorithms are slower and complicated.
2-Approximation Algorithm

- Pick a point $a \in P$.
2-Approximation Algorithm

- Pick a point $a \in P$.
- Find b such that $|ab|$ is maximum.
- $\Delta_0 = |ab|$.
Analysis

- Pick any point \(a \in P \).
 - \(O(1) \) time.
- Find \(b \in P \) such that \(|ab| \) is maximum.
 - Just go through the list of points in \(P \) and keep the maximum distance to \(a \).
 - It takes \(O(n) \) time.
- Conclusion: This algorithm runs in \(O(n) \) time.
Proof of Correctness

- We need to prove that Δ_0 is a 2-factor approximation of Δ^*. It means $\Delta_0 \leq \Delta^* \leq 2\Delta_0$.
- Since $(a, b) \in P^2$, clearly, $\Delta_0 = |ab| \leq \Delta^*$.
- We also need to prove that $\Delta^* \leq 2\Delta_0$.
 - Let a^* and b^* denote two points such that $|a^*b^*| = \Delta^*$.
 - By definition of b we have $|aa^*| \leq |ab|$ and $|ab^*| \leq |ab|$.
 - By the triangle inequality

\[
\Delta^* = |a^*b^*| \\
\leq |a^*a| + |ab^*| \\
\leq |ab| + |ab| \\
= 2\Delta_0.
\]
Concluding Remark

- The running time is optimal.
- If we do not assume \(d = O(1) \):
 - This algorithm still works.
 - But the running time has to be written \(O(dn) \).
 - It is still optimal as we need \(\Theta(nd) \) time to read the input.
We just found a 2-approximation algorithm.
We would like to obtain a better approximation.
Let $\varepsilon > 0$ be a real number.
- In this lecture, we assume $\varepsilon < 1$.
- ε should be thought of as being small, say $\varepsilon = 0.1$ or $\varepsilon = 0.01$.
We want to design a $(1 + \varepsilon)$-approximation algorithm.
The result will be Δ such that $\Delta \leq \Delta^* \leq (1 + \varepsilon)\Delta$.
- In other words, the relative error we allow is ε.
- So $\varepsilon = 0.01$ means a 1% error.
How to analyze a \((1 + \varepsilon)\)-approximation algorithm?

The running time is expressed as a function of \(n\) and \(\varepsilon\) using \(O(\cdot)\) notation.

- For instance, the last algorithm in this lecture runs in time.
 \[
 O(n + (1/\varepsilon)^{3/2}(d-1))
 \]

 - Since \(d = O(1)\), it is polynomial in \(n\) and \(1/\varepsilon\).
 - It is an \textit{FPTAS} (Fully Polynomial Time Approximation Scheme).

- The running time is linear in \(n\).
- Problem: exponential in \(d\).
 - These algorithms are only interesting in low dimension \(d\).
Idea

- Start with a set P of n points.
- Transform it into a set P' such that:
 - The cardinality $|P'|$ is small.
 - The diameter Δ' of P' is a good approximation of Δ.
- Then find Δ' by brute force
Consider a regular grid over \mathbb{R}^d.

The side length of the grid is ϵ', to be specified later.

Intuition: we will choose $\epsilon' \simeq \epsilon \Delta^*$, it is the error we allow.
Rounding to a Grid

- Replace each point of P with the nearest grid point.
- This operation is called *rounding*.
The grid points we obtain form the set P'.
Compute the diameter Δ' of P' by brute force.
Intuition

- P' is a d-dimensional point set with diameter Δ'.
- The points are on a grid with side length ϵ'; we will choose it such that $\epsilon' \simeq \Delta' \epsilon$.
- So in the worst case, there are about as many points in P' as in a $(1/\epsilon) \times (1/\epsilon) \cdots \times (1/\epsilon)$ grid in \mathbb{R}^d.
- There are $O((1/\epsilon)^d)$ such points.
- We can compute Δ' by brute force in time $O((1/\epsilon)^{2d})$.
How to Perform Rounding?

- The grid points have coordinates \((k_1\epsilon', k_2\epsilon', \ldots k_d\epsilon')\) where each \(k_i\) is an integer.
- Let \(p = (p_1, p_2, \ldots p_d) \in P\).
- How can we find the closest grid point \(p'\)?
- We need to find the closest integer \(k_i\) to \(p_i/\epsilon'\).
- It is given by the formula

\[
\lfloor \frac{p_i}{\epsilon'} + \frac{1}{2} \rfloor
\]

- \(p\) is rounded to \(p' = (k_1\epsilon', k_2\epsilon', \ldots k_d\epsilon')\).
- It takes \(O(d) = O(1)\) time.
Let $x \in \mathbb{R}^d$, and let x' be the closest grid point to x. Then $|xx'| \leq \epsilon' \sqrt{d}/2$.

- **Proof:** Apply previous slide formula.
- **Intuition:**
 - x is in a hypercube centered at x' with side length ϵ'.
 - This hypercube diagonal has length $\epsilon' \sqrt{d}$.
Approximation Factor

- Let a' and b' be the closest grid points to a^* and b^*, respectively.
- Then from previous slide, $|a'a^*| \leq \epsilon' \sqrt{d}/2$ and $|b'b^*| \leq \epsilon' \sqrt{d}/2$.
- By the triangle inequality,

$$
\Delta^* = |a^* b^*| \\
\leq |a^* a'| + |a' b'| + |b' b^*| \\
\leq |a' b'| + \epsilon' \sqrt{d} \\
\leq \Delta' + \epsilon' \sqrt{d}.
$$
Approximation Factor

- Let c' and d' be two points of P' such that $|c'd'| = \Delta'$.
- Let c and d be points of P that have been rounded to c' and d', respectively.
- Then $|cc'| \leq \epsilon' \sqrt{d}/2$ and $|dd'| \leq \epsilon' \sqrt{d}/2$.
- So by the triangle inequality,

$$
\Delta' = |c'd'| \\
\leq |cd| + \epsilon' \sqrt{d}.
$$

- Of course $|cd| \leq \Delta^*$.
- It follows that

$$
\Delta' \leq \Delta^* + \epsilon' \sqrt{d}
$$
Approximation Factor

- We obtained
 \[\Delta' - \epsilon'\sqrt{d} \leq \Delta^* \leq \Delta' + \epsilon'\sqrt{d}. \]

- We choose \(\Delta = \Delta' - \epsilon'\sqrt{d} \), so
 \[\Delta \leq \Delta^* \leq \Delta + 2\epsilon'\sqrt{d}. \]

- We want to make sure that \(2\epsilon'\sqrt{d} \leq \epsilon\Delta^*/2 \).
 - Since \(\Delta_0 \leq \Delta^* \), it suffices that \(2\epsilon'\sqrt{d} \leq \epsilon\Delta_0/2 \).
 - So we first compute \(\Delta_0 \), and then we set \(\epsilon' = \epsilon\Delta_0/(4\sqrt{d}) \).
 - It follows that \(\Delta \leq \Delta^* \leq \Delta + \epsilon\Delta^*/2 \).
 - Problem: We wanted to show that \(\Delta \leq \Delta^* \leq \Delta + \epsilon\Delta \).
Technical Difficulty

- Intuition: The relative error is less than ϵ, so it is OK.
- Proof: We want to prove that $\Delta^* \leq \Delta + \epsilon\Delta$.
 - We know that $\Delta^* \leq \Delta + \epsilon\Delta^*/2$.
 - Then

\[
\Delta^* \leq \frac{1}{1 - \epsilon/2} \Delta = \left(1 + \frac{\epsilon}{2} + \frac{\epsilon^2}{4} + \frac{\epsilon^3}{8} + \ldots\right) \Delta.
\]

- Since $\epsilon < 1$, we get

\[
\Delta^* \leq \left(1 + \epsilon \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \ldots\right)\right) \Delta = (1 + \epsilon)\Delta.
\]

- So Δ is a $(1 + \epsilon)$-factor approximation of Δ^*.

Cardinality of P'
Cardinality of P'

$$r \leq \Delta_0 + \epsilon' \sqrt{d}/2$$
Cardinality of P'

$$r' \leq \Delta_0 + \epsilon' \sqrt{d}/2 + \epsilon'/2$$
Cardinality of P'

- All the points of P are in a sphere with radius Δ_0.
- So all the points of P' are in a sphere with radius $\Delta_0 + \epsilon' \sqrt{d}/2$.
- To each point $p \in P'$, we associate a ball $b(p)$ centered at p with radius $\epsilon'/2$.
- These balls are disjoint and contained in a ball B with radius $\Delta_0 + \epsilon'(\sqrt{d}/2 + 1/2) \leq 2\Delta_0$.
How Many Grid Points are There?

- The volume of a ball with radius r in dimension d is $C_d r^d$, where C_d depends only on d.
- So the number of balls $b(p), p \in P'$ is at most
 \[\frac{C_d (2\Delta_0)^d}{C_d (\epsilon' / 2)^d} = \left(\frac{16\sqrt{d}}{\epsilon}\right)^d = O((1/\epsilon)^d). \]
- Each point $p \in P'$ is in exactly one ball $b(p)$.
- So $|P'| = O((1/\epsilon)^d)$.

Antoine Vigneron (KAUST)
CS 372 Lecture 14
December 5, 2012
31 / 46
Summary

- Compute Δ_0 in $O(n)$ time.
- Round all the points to a grid with side length $\epsilon' = \epsilon \Delta_0 / (4\sqrt{d})$.
 - It takes $O(n)$ time.
 - There are $O((1/\epsilon)^d)$ such points.
 - We denote by P' the set of rounded points.
- Compute the diameter Δ' of P' by brute force.
 - It takes $O((1/\epsilon)^{2d})$ time.
- $\Delta' - \epsilon' \sqrt{d}$ is a $(1 + \epsilon)$-factor approximation of the diameter Δ^* of P.
- Running time: $O(n + (1/\epsilon)^{2d})$.
Grid Cleaning: Example in \mathbb{R}^2

- \hat{a} is the lowest point on a vertical line
- \hat{b} is the highest point on a vertical line
Idea: keep only the highest and the lowest point on each vertical line.

Then run the brute-force algorithm.
Analysis in \mathbb{R}^2

- Only $O(1/\epsilon)$ points remain after grid cleaning.
- So the algorithm runs in $O(n + (1/\epsilon)^2)$ time.
- In higher dimension, same idea.
 - Consider all the points that coincide in their first $(d - 1)$ coordinates.
 - Keep only highest and lowest.
 - Then only $O((1/\epsilon)^{d-1})$ remain from P'.
 - So rounding + grid cleaning yields a running time $O(n + (1/\epsilon)^{2d-2})$.
Projecting on Lines

- We measure angles in radian.
- That is, an angle is in $[0, 2\pi]$.

Property

For any α,

$$1 - \frac{\alpha^2}{2} \leq \cos \alpha \leq 1.$$

- Idea: We get a relative error ε by choosing α to be roughly $\sqrt{\varepsilon}$.
Projecting on Lines

\[|a' b'| \leq |ab| \leq (1 + \varepsilon)|a' b'| \]
Projecting on Lines

- Assume that the angle between line \(ab \) and line \(\ell \) is at most \(\sqrt{\epsilon} \).
- \(a' \) (resp. \(b' \)) is the orthogonal projection of \(a \) (resp. \(b \)) into \(\ell \).
- Then

\[
|a'b'| \leq |ab|
\]

\[
\leq |a'b'| \times \frac{1}{1 - \epsilon/2}
\]

\[
= |a'b'| \times \left(1 + \frac{\epsilon}{2} + \frac{\epsilon^2}{4} + \frac{\epsilon^8}{8} + \ldots\right).
\]

- Since we assume that \(\epsilon < 1 \), we obtain

\[
|a'b'| \leq |ab| \leq |a'b'| (1 + \epsilon).
\]

- In other words, \(|a'b'| \) is a \((1 + \epsilon) \)-factor approximation of \(|ab| \).
Idea

- P_ℓ obtained by projecting P onto a line ℓ.

- Compute the diameter of P_ℓ.
 - Can be done in $O(n)$ time: Find maximum and minimum along ℓ.
Idea

- If the angle between ℓ and $a^* b^*$ is less than $\sqrt{\epsilon}$, then the diameter of P_ℓ is a $(1 + \epsilon)$-factor approximation of Δ^*.
- How can we find a line that makes an angle $\sqrt{\epsilon}$ with ab?
 - Pick several lines.
 - In the plane: Pick direction $k \sqrt{\epsilon}$ for each $k \in [0, \pi / \sqrt{\epsilon}]$.

$O(\sqrt{\epsilon})$ cones with angular diameter $\sqrt{\epsilon}$.
Algorithm in \mathbb{R}^2

- For any integer $k \in [0, \pi/\sqrt{\epsilon}]$, we denote by ℓ_k a line that makes angle $k\sqrt{\epsilon}$ with horizontal.

- Project P onto ℓ_k, obtaining P_{ℓ_k}.

- The maximum of the diameter of P_{ℓ_k} over all k is a $(1 + \epsilon)$-factor approximation of the diameter of P.
Algorithm in \mathbb{R}^2: Analysis

- Projecting onto a particular ℓ_k takes $O(n)$ time.
- Computing the diameter of P_{ℓ_k} takes $O(n)$ time.
- There are $O(1/\sqrt{\epsilon})$ such lines.
- Overall running time $O(n/\sqrt{\epsilon})$.

Let θ be the angle of $a^* b^*$ with horizontal.

There exists k such that $k \sqrt{\epsilon} \leq \theta < (k + 1) \sqrt{\epsilon}$.

The angle between $a^* b^*$ and ℓ_k is at most $\sqrt{\epsilon}$.

So the diameter of P_{ℓ_k} is at least $\Delta^* / (1 + \epsilon)$.

So the output of the algorithm is at least $\Delta^* / (1 + \epsilon)$.

On the other hand, the algorithm only looks at distances between two projected points, which are always smaller than Δ^*.
Generalization in \mathbb{R}^d
Generalization in \mathbb{R}^d

- **Problem:** Find a set of directions that approximates well the whole set of directions.

- **Reformulation:**
 - Let S be the unit sphere in \mathbb{R}^d.
 - Find $D \subset S$ with small cardinality such that $\forall x \in S$ there is a point $d \in D$ such that $|dx| \leq \sqrt{\epsilon}$.
 - A point $d \in D$ is associated with the line through the origin and d.
 - d handles a cone of direction with angular radius $\sqrt{\epsilon}$.

- Such a set D with cardinality $O((1/\epsilon)^{(d-1)/2})$ can be computed efficiently.

- So the algorithm runs in time $O(n(1/\epsilon)^{(d-1)/2})$.
Combining the two Techniques

- **Running times:**
 - Grid + cleaning: $O(n + (1/\epsilon)^{2d-2})$.
 - Projections: $O(n(1/\epsilon)^{(d-1)/2})$.

- **Approach:**
 - First round to P' and do grid cleaning.
 - We are left with $O((1/\epsilon)^{d-1})$ points.
 - Project on lines.
 - Overall running time: $O(n + (1/\epsilon)^{3(d-1)/2})$
 - Technical problem: the approximation factor is now about $1 + 2\epsilon$. (how to solve it?)