CS 372: Computational Geometry
Lecture 3
Line Segment Intersection

Antoine Vigneron

King Abdullah University of Science and Technology

September 9, 2012
1 Introduction

2 Preliminary

3 Intersection Detection

4 Intersection reporting
Problems

Input: A set $S = \{s_1, s_2, \ldots s_n\}$ of n line segments in \mathbb{R}^2 given by the coordinates of their endpoints.

- **Intersection detection**: Is there a pair $(s_i, s_j) \in S^2$ such that $i \neq j$ and $s_i \cap s_j \neq \emptyset$?
- **Intersection reporting**: Find all pairs $(s_i, s_j) \in S^2$ such that $i \neq j$ and $s_i \cap s_j \neq \emptyset$.
Motivation

- Motion planning: collision detection
Motivation

- Geographic Information Systems: Map overlay
- More generally: spatial join in databases
Motivation

- Geographic Information Systems: Map overlay
- More generally: spatial join in databases

ROAD MAP + RIVER MAP
Motivation

- Computer Aided Design: boolean operations
Intersection of Two Line Segments

Finding the intersection of two line segments:
- Find the intersection of their two support lines
 - Linear system, two variables, two equations.
- Check whether this intersection point is between the two endpoints of each line segment. If not, the intersection is empty.
- Degenerate case: same support line. Intersection may be a line segment.

$O(1)$ time.

Checking whether two line segments intersect without computing the intersection point:
- 4 $CCW(\cdot)$ tests. (How?)
First Approach

- Brute force algorithm: Check all pairs of segments for intersection.
- Running time:
 \[
 \binom{n}{2} \cdot \Theta(1) = \Theta(n^2)
 \]
- Can we do better?
 - Intersection detection:
 - Yes, see later.
 - Intersection reporting:
 - If all pairs intersect there are \(\Omega(n^2)\) intersections, then our time bound is optimal as a function of \(n\).
 - So we will look for an output-sensitive algorithm.
Plane Sweep Algorithms

- Intuition: A vertical line sweeps the plane from left to right and draws the picture.
- Example: last week’s convex hull algorithm.
The sweep line moves from left to right and stops at event points.
- Convex hull: The event points are just the input points.
- Sometimes they are not known from the start (see intersection reporting).

We maintain invariants.
- Convex hull: I know the upper hull of the points to the left of the sweep line.

At each event, restore the invariants.
General Position Assumptions

- No three endpoints are collinear.

Let E be the set of the endpoints. Let I be the set of intersection points.
- No two points in $E \cup I$ have same x-coordinate.
- No three segments intersect at the same point.

Degenerate Cases

- 3 collinear endpoints
- same x-coordinate
- multiple intersection
Intersection Detection

Plane sweep algorithm

- Let ℓ_t be the vertical line with equation $x = t$.
- S_t is the sequence of segments that intersect ℓ_t, ordered by the y-coordinates of their intersections with ℓ_t.

$$S_t = (s_4, s_5, s_3)$$
Intersection Detection

- Idea: Maintain S_t while ℓ_t moves from left to right until an intersection is found.
- Invariants:
 - There is no intersection to the left of ℓ_t.
 - We know S_t.
- Let $t_1 < t_2 < \cdots < t_{2n}$ be the x-coordinates of the endpoints.
- ℓ_t stops at each time $t = t_i$.
- Let f be the last index the sweep-line ℓ_{t_i} reaches.
- In other words, let f be the largest index such that there is no intersection point with abscissa smaller than t_f.
Example

Knowing S_{t_i} for some $i < f$, we can easily find $S_{t_{i+1}}$. (See next two slides.)
First Case: Left Endpoint

If t_{i+1} corresponds to the left endpoint of s, insert s into S_{t_i} in order to obtain $S_{t_{i+1}}$.

\[S_{t_3} = (s_2, s_3, s_1) \]
\[S_{t_4} = (s_2, s_3, s_4, s_1) \]
Second Case: Right Endpoint

Delete the corresponding segment in order to obtain $S_{t_{i+1}}$.

\[S_{t_4} = (s_2, s_3, s_4, s_1) \]

\[S_{t_5} = (s_2, s_3, s_4) \]
Data Structure

- We maintain S_t in a balanced binary search tree.
- For $i < f$, we obtain $S_{t_{i+1}}$ from S_{t_i} by performing an insertion or a deletion.
- Each takes $O(\log n)$ time.
- We did not check intersections. How to do it?
A Geometric Observation

- Let $q = s \cap s'$ be the leftmost intersection point.

- s and s' are adjacent in S_{t_f} (proof next slide).
Proof by Contradiction

- Assume that $S_{t_f} = (\ldots s \ldots s'' \ldots s' \ldots)$.
- The right endpoint of s'' cannot be to the left of q, by definition of t_f.
- If q is below s'', then s'' intersect s' to the left of q, which contradicts the fact that q is the leftmost intersection.
- Similarly, q cannot be above s''.
- We reached a contradiction.
Checking Intersection

- We store S_t in a balanced binary search tree \mathcal{T}, the order is the vertical order along ℓ_t.
- Given a segment in \mathcal{T}, we can find in $O(\log n)$ time the next and previous segment in vertical order.
- When deleting a segment in \mathcal{T}, two segments s and s' become adjacent. We can find them in $O(\log n)$ time and check if they intersect.
- When inserting a segment s_i in \mathcal{T}, it becomes adjacent to (at most) two segments s and s'. Check if $s_i \cap s \neq \emptyset$ and if $s_i \cap s' \neq \emptyset$.
- In any case, if we find an intersection, we are done.
Pseudocode

Line segment intersection detection

Algorithm \textit{DetectIntersection}(S)

Input: A set S of line segments in \mathbb{R}^2

Output: TRUE iff there exist two intersecting segments in S

1. $(e_1, e_2 \ldots e_{2n}) \leftarrow$ Endpoints, ordered by increasing x-coordinate
2. $T \leftarrow$ empty balanced BST
3. \textbf{for} $i = 1$ to $2n$
4. \hspace{1em} \textbf{if} e_i is left endpoint of some $s \in S$
5. \hspace{2em} \textbf{then} insert s into T
6. \hspace{2em} \textbf{if} s intersects $\text{next}(s)$ or $\text{prev}(s)$
7. \hspace{2.5em} \textbf{then return} TRUE
8. \hspace{1em} \textbf{if} e_i is right endpoint of some $s \in S$
9. \hspace{2em} \textbf{if} $\text{next}(s)$ intersects $\text{prev}(s)$
10. \hspace{2.5em} \textbf{then return} TRUE
11. \hspace{1em} \textbf{else} delete s from T
12. \textbf{return} FALSE
Analysis

- Line 1: $\Theta(n \log n)$ time by mergesort
- Line 2: $O(1)$ time
- Line 5 and 6: $O(\log n)$ time
- Loop 3–11: $O(n \log n)$ time
- So our algorithm runs in $\Theta(n \log n)$ time
- We will see later that it is optimal in some sense.
Intersection Reporting

- Brute force: $\Theta(n^2)$ time, which is optimal in the worst case, when there are $k = \Omega(n^2)$ intersections.
- If there is ≤ 1 intersection, the detection algorithm does it in $O(n \log n)$ time which is better.
- We will be able to interpolate between these two algorithms, and find an output-sensitive algorithm.
Let $k = \#$ intersecting pairs.

Here $k = \#$ intersection points, since we assume general position.

k is the output size.

Sweep line algorithm reports intersections in $O((n + k) \log n)$ time (see later).

This is an output sensitive algorithm.

$\Omega(n + k)$ is a lower bound

\Rightarrow nearly optimal (within an $O(\log n)$ factor).
Algorithm

- Similar to intersection detection.
- Two types of event points: endpoints and intersection points.
- We do not know intersection points in advance.
 - We cannot sort them all in advance.
 - We will use an event queue Q.
- Q contains event points ordered by increasing x-coordinate.
- Implementation: a min-heap.
- We can insert an event point in $O(\log n)$ time.
- We can dequeue the event point with smallest x-coordinate in $O(\log n)$ time.
Algorithm

- Initially, Q contains all the endpoints.
- The sweep line moves from left to right.
- It stops at each event point of Q. When it does, we dequeue the corresponding event point.
- Each time we find an intersection, we insert it into Q.
- When we reach an intersection point, we swap the corresponding segments in T, and check for intersection the newly adjacent segments.
Intersection Event

At time t, the event queue Q contains all the endpoints with abscissa larger than t and the intersection point $s_2 \cap s_3$. At time t', we insert $s_3 \cap s_5$ into Q.

$S_t = (s_5, s_2, s_3, s_4)$

$S_{t'} = (s_5, s_3, s_2, s_4)$

Check $s_4 \cap s_2$

and $s_3 \cap s_5$
Analysis

- Each event is inserted or deleted in $O(\log(n + k))$ time.
- Problem: An intersection point may be inserted several times into Q.

$s_1 \cap s_2$ is inserted three times.
- when we reach the left endpoint of s_2
- when we reach the right endpoint of s_3
- when we reach the right endpoint of s_4

- When we reach an event point that is present several times in Q, we just extract it repeatedly until a new event is found.
Some intersection points are inserted several times into Q. How many times does it happen?
- At most twice at each endpoint or intersection point.
 - At most $4n + 2k$ times in total.

It follows that we insert $O(n + k)$ events into Q.
So the algorithm runs in $O((n + k) \log(n + k))$ time.

$log(n + k) < log(n + n^2) = O(log n)$
The running time is $O((n + k) \log n)$.
Space Complexity

- In the worst case, Q contains $O(n + k)$ points.
- This algorithm requires $O(n + k)$ space.
- Can we do better?
- Yes: At time t, only keep intersections between segments that are adjacent in S_t.
- Then the algorithm requires only $O(n)$ space.
Conclusion

- New algorithmic paradigm: Plane Sweep.
- Idea: a sweep line moves from left to right and draws the picture.
- It stops at a finite set of event points, where the data structure is updated.
- The event points are stored in a priority queue.
- It can be used for other problems. For instance:
 - Map overlay: compute a full description of the map.
 - Fixed-radius near neighbor searching in 2D.